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We show how the “bag” model of Chodos, Jaffe, Johnson, Thorn, and Weisskopf for confining
quarks within extended hadrons can be realized as a limit of a conventional local field theory.

A recently proposed picture for hadrons' ex-
plains the success of the predictions of the quark
model without requiring the existence of free quark
states. In this model the strongly interacting
particles are constructed from quarks held inside
a relativistic “bag.” The quarks are nearly free
in the interior of the bag, while they are for-
bidden from penetrating the surface. The energy
of this system is the quark energy plus a term
proportional to the volume of the bag. This latter
term acts to compress the bag against the outward
pressure of the quark “gas” serving to keep the
bag inflated.

The interesting feature of this model is a non-
local description for a relativistic system. From
the outset hadrons are extended objects. This is
to be contrasted with conventional relativistic field
theories where the point of departure is a set of
local fields. Indeed, bag theories might be ex-
pected to possess quite different properties from
local theories. For example, such a commonly
accepted principle as analyticity of scattering
amplitudes could be questioned.

In this note we show that the bag model of Ref. 1
is obtainable as a limit of a conventional local
field theory. We utilize a particular example of a
type of state recently discussed by Lee and Wick.?
The philosophy behind our discussion is similar
to that presented by Vinciarelli.?

Beginning with a local theory, we construct
states of finite spatial extent. These states be-
come the states of the bag model in a certain limit
of the parameters in the theory. The local theory
we consider contains a field which assumes the
value zero in the lowest energy state, or vacuum.
However, the theory allows a metastable state in
which this field assumes a constant nonvanishing
value. Beginning with the vacuum, we produce a
bag state by forming the metastable state in a
finite region of space. Surrounding this bag is a
“skin” or transition region in which the field ad-
justs from zero to the metastable value in a manner
that minimizes the energy per unit area of skin.

Such a state by itself is unstable because it can
lose energy by returning to the ground state. To
stabilize the bag we fill it with other fields, the
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quarks, carrying conserved quantum numbers. We
introduce a coupling between the quark fields and
the bag in such a manner that the quarks have a
large effective mass outside the bag, but they are
massless in the interior. As a consequence, it
takes less energy to create a quark inside the bag
than to create it outside, and so the quarks are
held inside. However, the quark kinetic energy
increases as the bag becomes smaller; this energy
balances the forces tending to make the bag col-
lapse.

The main objective of this paper is to show that
the parameters of this theory have a limit in which
the energy and thickness of the bag skin go to zero,
at the same time as all masses except the interior
quark mass go to infinity. This limit gives the
bag model of Ref. 1.

To have physical hadrons with normal charges
in theories with fractionally charged quarks, the
authors of Ref. 1 couple the quarks to a massless
vector-gluon field which is also confined to the
bag. We keep this mechanism in our local theory,
although before we take the limit giving the theory
of Ref. 1 the gluon field has a large but finite mass
outside the bag, and can thus penetrate a short
distance through the skin. In our model calcula-
tion a single charged scalar field represents the
quarks; thus we ignore the quark spin and mul-
tiplicity, as well as the gluon fields.

Our discussion involves classical unquantized
systems. We conjecture that the quantized bag
theory is the limit of the quantized version of the
local field theory discussed classically here. We
shall restrict the interaction terms in our theory
to be renormalizable in perturbation theory, al-
though it is not clear that this is necessary since
perturbation theory does not yield the bag states.

We begin with the Lagrangian density

£=33, ¢(%)8, p(x) +3,p*(x)3,P(x)
= V( (%)) = Mp*(x)p(x)[ o(x) - B]? ,

where

V(¢) = o[ 5¢* - (B+¥)3¢° +Brz 0] .

(1)

(2)

The quantities a, B, v, and X are positive param-
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eters. Here ¢(x) is the real scalar field which will
produce the bag, and ¥ (x) is the complex quark
field.* The potential V(¢) is plotted in Fig. 1. We
constrain

l<Z<1 (3)

2 B

so that V(¢ ) has two minima, the lowest at ¢ =0
and another at ¢ =8. The Hamiltonian density
corresponding to this Lagrangian is

30(%) = 3[8,0(x)3,P(x) + V(%) » Vp(x)] +8 9 *(x)3 (%)
+VPH(x) » Vi(x) + V( d(2)) + ()2 p(x) - B
(4)

In the absence of y(x) the state of lowest energy
has ¢(x) =0 for all x, but there exists a metastable
state with ¢(x)=g. The equations of motion for the
fields are

O¢(x) == adp(x)[ ¢(x) = v][$(x) - ]

= 22X (x)(x)[ ¢(x) - 8],
Oy(x) = = xp(2)[p(x) = 8] > .
Since these equations involve second derivatives
with respect to time, complete specification of the
system at any one time requires knowledge of both

the fields and their first time derivatives. The field
P(x) carries a conserved current

Ju (%) =008, (%) = [ 3,9*(x) ] ¥(x) ,
3:j=0,

(5)

(6)
and the associated charge
Q= [ axjyn

ag

dt

(7

We shall vary the parameters «, 3, 7, and A to
obtain the bag theory of Ref. 1. The dynamics of
the latter theory is determined by the Lagrangian

Vig)

FIG. 1. The shape of the potential V(¢) of Eq. (2),
plotted for y/8=0.53.

MICHAEL CREUTZ 10

Lu(t) = me d%x [8,x*(x)8,x () - 5]

. fm d%x [8,X *(2)0 ,x (%) ~ M 2 H ()]

(8)

in the limit M—-«. Here R(t) is the region of space
referred to as the “bag” and R(¢) is its comple-
ment.5> The field x(x) represents the quarks and
corresponds to our field §(x). The resulting bag
Hamiltonian is

Hiog = f d3x[8,X *(x)8 X (x) + VX *(x) + VX () + B]
R(t)

+ f_ d3x[8,X *(x)8X (%) + VX *(x) « Vx () +M3x *X ] .
R(t)

(9)

To obtain this theory from our local theory, we
construct bag states characterized by ¢(x) having
the value B inside the bag. The field ¢(x) adjusts
itself outside the bag so as to minimize the energy
of the system. We must now show the existence of
a limit of the parameters in the theory such that
these spatial variations in ¢(x) occur only in a
vanishingly small region about the surface of the
bag. To avoid particles corresponding to fluctua-
tions of ¢(x) about its average value either inside
or outside the bag, the above limit must give a
large effective mass to such particles. The mass
associated with excitations of y(x) is also to be-
come large outside the bag, but inside the bag y
is massless and becomes effectively free.

We now give the required conditions more pre-
cisely. The effective mass of ¢ excitation outside
the bag is

my, g2 =A% . (10)

Thus, to obtain the bag model we require

ABE—oo . (11)
The exterior ¢ mass yields the condition

mg, g’ = afy =, (12)
while the interior ¢ mass gives

,_ d?

me =2 XG | apgoyy-m.  (19)
do* |g=8

Because of Eq. (3), both Egs. (12) and (13) are

equivalent to

aBZ—~o . (14)
To keep a term in the Hamiltonian equal to B times
the bag volume, we require
1

V(ﬁ)=%aﬂ4(§—§) -B . (15)
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We must adjust the parameters so that both the
thickness and energy of the bag skin go to zero.
To estimate these quantities we use a variational
calculation. We approximate the skin shape with
a simple linear form, knowing that the true skin
will have a lower energy content. At a particular
time we consider a cross section of skin with ¢(x)
as shown in Fig. 2.° Here A parametrizes the skin
thickness. We take 8,¢(x) =0=y(x) =0,4(x). Later
we shall argue that the presence of § will not
significantly alter the skin properties. The energy
per unit area of such a skin is

Bdo)= [Tax[ 3 (75 0) s

L

_1g 1 az (X g>
-3 aBA<ﬁ—5 . (16)
Minimizing with respect to A gives
6 y 2)‘1
.2= — —

dt= o (F-3) am
_ aﬁe y g)]l/z

E:.min'[ 6 (B_s . (18)

Recalling that $ <y/8< 1, we find that to obtain
Amin—~0and E, . -0 requires

aBz-.co ) (19)
aB®~0. (20)

Note that conditions (14) and (19) are equivalent.’
As another condition on our limit, we require
the y particles inside the bag to become effectively
free. Although the ¢ excitations in the bag havea
large mass, they can produce an effective coupling
among the y particles, just as massive interme-
diate vector bosons in theories of the weak inter-
actions produce effective four-fermion couplings
at low energy. Consequently, we require the term
M ¥(x)p(x)[ p(x) — B] 2 to be unimportant inside the
bag. Since variations of ¢(x) about 8 are para-
metrized by my ,, we demand of our limit

¢(x)
A
B
BAG
INTERIOR VACUUM
(¢:8) ($=0)
T > X
A

FIG. 2. The parametrization of ¢(x) used to estimate
the thickness and energy of the bag skin.
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A A

2 2
M¢" QB

-0. (21)

Finally we discuss the behavior of y(x) in the
vicinity of the skin. Combining Eqs. (10) and (17)
we see that

My, " Amin” ~Na . (22)

The conditions (19), (20), and (21) imply that the
right-hand side of Eq. (22) goes to zero in our
limit. Unless the y field has important contribu-
tions with momenta large compared to the ex-
ternal § mass, y effectively cannot see the thick-
ness of the skin. Neglecting such high-momentum
components, we consider varying the field ¢(x)
s0 as to produce an infinitesimal coherent shift

in the skin position. The action derived from the
Lagrangian in Eq. (1) must, of course, be in-
variant under such a variation. This immediately
yields boundary conditions for y identical with those
found by variation of the bag boundary in the
Lagrangian of Eq. (8).> For consistency, we still
must show that the interaction between y(x) and
¢(x) does not appreciably alter the properties of
the skin. Thus we ask that

A i )P D(%) = B]?) gin <<E . (23)
This will follow if
ap?
<¢*(x)¢(x)> skin << by (24)

On the other hand, condition (21) implies that the
right-hand side of relation (24) goes to infinity.
Since in the limit y(x) vanishes on the skin, this
condition is automatic.

We summarize all the conditions we wish to
satisfy:

ABZ =, (25a)
ap?-w, (25b)
Y __1_ 6B

B—2+aﬁ4’ (25¢)
ap®-0, (25d)
&'2"2 ~0. (25¢)

Conditions (25b) and (25d) immediately tell us that
B —0. This means that the numerical shift in ¢
required to produce a bag is small. We now para-

metrize a and A by
a=R B—(P1+ 4)

1 9 (26)

A=R,p~#2*?)

where R, and R, are positive constants. The condi-
tions (25) now become
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B-0, (27)

0<p,<p, <2, (28)
1 12B

r=3 B<1+ R, ﬁ’l> . (29)

These conditions are clearly easy to satisfy.
In conclusion, the Lagrangian

£=33, ¢(x)d, p(x) +8,y*(x)3, Y(x)
- V(¢(x)) = R,p~*2*D [ ¢(x) - g] 2, (30)

where

4 ’1
V(¢)=R,B-¥r+? [i‘;___;_ 8 (1 ,ABB \)¢3

R,
(102 0],

(31)
describes, in the limit 3—0, the bag theory of
Ref. 1. The positive parameters R,, R, are
arbitrary, while p, and p, are constrained by the
inequality (28). As the limit 8 -0 is taken, the
two minima of V(¢) approach each other but are
separated by a barrier of growing height. The
depths of these two minima differ by the bag con-
stant B.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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Our model calculation differs slightly from that in Ref.
1 in that we fill the bag with a charged field (), while
Ref. 1 considers a neutral one.

We are discussing the system of Ref. 1 with the bound-
ary conditions referred to as Dirichlet rather than the
alternative theory with Neumann boundary conditions.

®Of course, in the true minimum-energy configuration,
¢(x) has a small nonzero value even for large x. The

skin thickness A parametrizes the distance beyond
which ¢(x) is in some sense negligible. Also note that
our parametrization for ¢ (x) has a discontinuous first
derivative. Since the equations of motion involve sec-
ond derivatives with respect to x, to avoid infinities
we should slightly round off the corners of our para-
metric form. This problem does not enter the calcula-
tion of the energy; so, we can ignore it here.

"We remark here that a possibly interesting variation
on the bag model follows if E ;, is allowed to remain
finite. This generates an effective term in the bag
Hamiltonian proportional to the surface area of the
bag. Such a surface term also acts to hold the bag
together, removing the necessity for nonzero B.



